If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2=103
We move all terms to the left:
k^2-(103)=0
a = 1; b = 0; c = -103;
Δ = b2-4ac
Δ = 02-4·1·(-103)
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{103}}{2*1}=\frac{0-2\sqrt{103}}{2} =-\frac{2\sqrt{103}}{2} =-\sqrt{103} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{103}}{2*1}=\frac{0+2\sqrt{103}}{2} =\frac{2\sqrt{103}}{2} =\sqrt{103} $
| x+4(4x+5)=40 | | 9.5=5r | | 218=147-y | | −4k+2(5k-6)=-3k-39 | | -3(-5x+2)-7=11+11x | | -8/17=11/17+5/17x | | 22(g-1)=2g=8 | | -4(1-6x)-7(x+8)=1+3x+x+4 | | (5v+2)(8v)=0 | | k^2=59 | | (2*s+7/6)-(2*s-9/10)=3 | | 14+k=7 | | 4/5+x=43 | | 3(-x+4)-14=58+3x | | 10x-12=-32 | | 3+i/2i=0 | | X+-1=-2x+2 | | 14=x÷6 | | 2x^2−x−6=0 | | x.6=-8 | | 2-(18/(x^2))=0 | | 4.3x+23=2.3x+21 | | 8x/3+42=2x/3+33 | | 2(6x+5)-7x=2x-2 | | 4b+6(b+3)=8(2b+6) | | G(x)=6-5x | | 4x+3=2x-13 | | 7/x=10-x/3 | | -19=3-8n-3 | | G(x)=6x-5x=4 | | e-14=19 | | 3-(147/(x^2))=0 |